Lead the transition toward a zero-waste circular bioeconomy with this essential resource, which provides expert insights into leveraging nano-biotechnology and molecular biology to transform agroindustrial waste into high-value solutions for climate mitigation, wastewater treatment, and corrosion control.
Table of ContentsPreface
1. Bioremediation of Agroindustrial Waste Anita Gupta and Sunita Upadhaya
1.1 Introduction
1.2 Types of Agroindustrial Wastes and Their Composition
1.2.1 Agro-Industry
1.2.2 Food Industry
1.2.3 Meat and Poultry Industry
1.2.4 Marine (Seafood) Industry
1.2.5 Paper and Pulp Industry
1.3 Bioremediation of Agroindustrial Waste
1.3.1 Microbial Bioremediation
1.3.1.1 Bioleaching
1.3.1.2 Bioaugmentation
1.3.1.3 Biostimulation
1.3.1.4 Bioaccumulation
1.3.1.5 Biosorption
1.3.1.6 Precipitation
1.3.2 Factors Affecting Microbial Bioremediation
1.3.3 Phytoremediation
1.3.3.1 Phytostabilization
1.3.3.2 Phytoextraction
1.3.3.3 Phytovolatilization
1.3.3.4 Phytofiltration
1.3.4 Enzyme-Assisted Bioremediation
1.3.4.1 Ligninases
1.3.4.2 Cellulases
1.4 Valorization of Agroindustrial Wastes
1.4.1 Combustion
1.4.2 Gasification
1.4.3 Pyrolysis
1.4.4 Fermentation
1.4.5 Transesterification
1.4.6 Anaerobic Digestion
1.5 Challenges and Limitations
1.5.1 Improvement in Government Regulatory Frameworks Related to Green Technology
1.5.2 Scaling and Technology Transfer in Bioremediation of Agricultural and Industrial Waste
1.6 Advancement, Scope, and Future Perspectives
1.6.1 Technological Advancements
1.6.2 Circular Economy Integration
1.6.3 Sustainability and SDGs
References
2. Sustainable Waste Management Systems and TechniquesHuwaida Ahmed Bahashwan, Mohamad Anuar Kamaruddin, Faris Aiman Norashiddin, Nor Habsah Md Sabiani, Mohd Suffian Yusoff, Mark Harris Zuknik
and Hamidi Abdul Aziz
Nomenclature
2.1 Introduction
2.1.1 Sustainable Solid Waste Management
2.1.2 Solid Waste Types
2.1.2.1 Lignocellulosic
2.1.2.2 Municipal Solid Waste (MSW)
2.1.2.3 Industrial Solid Waste (ISW)
2.1.2.4 Bio-Medical Waste (BMW)
2.1.2.5 Plastic Solid Waste (PSW)
2.1.2.6 Hazardous Solid Waste (HSW)
2.2 Sustainable Solid Waste Management Systems
2.2.1 The Waste Management Hierarchy
2.2.2 The History of Solid Waste Management in Malaysia
2.2.3 Malaysia’s Development of Solid Waste Management
2.2.4 Sustainable Development of Solid Waste Management Techniques In Malaysia
2.3 The Technology of Municipal Solid Waste Management (MSWM)
2.3.1 Waste Collection and Transportation
2.3.2 Segregation
2.3.2.1 Multi-Compartment Bins
2.3.2.2 Optical Sorting
2.3.2.3 Automatic Bottle Sorting System
2.3.2.4 Cullet Remanufacturing
2.3.3 Treatment and Disposal
2.3.3.1 Gasification and Ash Melting (GAM) Technology
2.3.3.2 Anaerobic Digestion (AD)
2.3.3.3 Development of Anaerobic Digestion Techniques
2.3.3.4 Composting Techniques
2.4 Conclusion
Bibliography
3. Eco-Friendly Valorization of Agroindustrial Residues for a Zero-Waste FutureAly Reda, Mohamed Nabeel and Tamer Shoeib
3.1 Introduction
3.2 Agroindustrial Biowastes Valorization as a Green Approach for Sustainable Water Remediation
3.3 Solid-State Fermentation: A Pathway for Agroindustrial Residue Application
3.4 Valuable Products from Agroindustrial Waste
3.4.1 Polyphenol Production from Agroindustrial Waste
3.4.2 Pigments Production from Agroindustrial Waste
3.4.3 Protein Production from Agroindustrial Waste
3.4.4 Agroindustrial Biowastes in Biofuel Production
3.4.4.1 Biodiesel Production from Biomass
3.4.4.2 Sustainable Bioethanol Production from Agroindustrial Residues
3.4.4.3 Biohydrogen Production through the Utilization of Agroindustrial Residues
3.4.5 Production of Carbonous Material and Nanomaterials
3.4.5.1 Energy Storage
3.4.5.2 Air Remediation
3.4.6 Production of Bio-Based Composites
3.5 Agroindustrial Residue Management through Composting
References
4. Pretreatment and Bioconversion for Valorization of Biomass Residues of Edible and Nonedible CropsAhmad Mustafa, Shah Faisal, Mamoona Munir, Febri Odel Nitbani, Ozben Kutlu, Boutaina Rezki, Cassamo U. Mussagy, M. Shaaban Sadek, Mushtaq Ahmad, Tamer M.M. Abdellatief, Shazia Sultana and Carlo Pastore
4.1 Introduction
4.2 Overview of Physical, Chemical, and Biological Methods of Pretreatment
4.2.1 Overview
4.2.2 Lignocellulosic Pretreatment Methods
4.2.2.1 Physical Pretreatment
4.2.2.2 Chemical Pretreatment
4.2.2.3 Biological Pretreatment
4.3 Thermal Conversion of Biomass Residues
4.4 Evaluation of Bioconversion Efficiency and Product Yield
4.5 Case Studies and Applications in Biomass Residue Valorization
4.5.1 Successful Applications of Pretreatment and Bioconversion in Specific Crop Residues
4.5.1.1 Coffee Residues Valorization
4.5.1.2 Soybean Residues Valorization
4.5.1.3 Wheat Residues Valorization
4.5.2 Impact of Biomass Valorization on Industrial, Agricultural, and Energy Sectors
4.5.3 Global Initiatives and Policies Promoting the Adoption of Biomass Valorization Technologies
4.6 Conclusion
References
5. Advancing Sustainable Energy: Circular Utilization of Lignocellulosic Biomass for Bioethanol and Renewable Biofuels in the Green EconomyNour Shafik El-Gendy, Hussein Nabil Nassar and Basma A. Ali
5.1 Introduction
5.2 Bridging the Energy Gap: Exploring Biofuels and Sustainable Biorefineries for a Greener Future
5.3 Biofuel Generations
5.3.1 First Generation (1G)
5.3.2 Second Generation (2G)
5.3.3 Third Generation (3G)
5.3.4 Fourth Generation (4G)
5.4 Lignocellulosic Biomass Overview
5.5 (Hemi)cellulolytic Enzymes and Their Role in Lignocellulose Hydrolysis and Saccharification
5.6 Bioethanol
5.7 Valorization of Spent Lignocellulosic Wastes Residues Disposed of Bioethanol Production Plants
5.8 Challenges and Opportunities
Acknowledgment
References
6. Emergence of Third-Generation Biofuel: An Outlook on Present and Future StanceChirom Aarti, Kaustubh R. Sawant, Divya Mudgil and Sanjukta Subudhi
6.1 Introduction
6.2 Microalgae Biomass for Bioethanol Production
6.3 Algal Species for Bioethanol Production
6.3.1 Green Microalgae
6.3.2 Blue-Green Microalgae
6.4 Microalgae Processing
6.4.1 Microalgae Growth Characteristics
6.4.2 Open Pond Cultivation
6.4.3 Closed Cultivation
6.4.3.1 Tubular PBR
6.4.3.2 Modern PBR
6.4.3.3 Hybrid PBR
6.4.3.4 Bag PBR
6.5 Harvest Techniques
6.6 Dewatering
6.7 Molecular Strategies Involved in Genetic Engineering
6.7.1 Genetic Tools for Metabolic Engineering of Cyanobacteria and Microalgal for Production of Biomolecules
6.7.2 Metabolic Engineering of Cyanobacteria and Microalgae for Bioethanol Production
6.8 Pretreatment Technologies
6.8.1 Microwave
6.8.2 Ultrasound
6.8.3 Bead Milling
6.8.4 Pulsed Electric Field
6.8.5 Freezing
6.8.6 High-Pressure Homogenization
6.8.7 Acid and Alkaline Hydrothermal
6.8.8 Enzymatic Treatment
6.9 Fermentation
6.9.1 Bioethanol Fermentation Process
6.9.1.1 Separate Hydrolysis and Fermentation (SHF)
6.9.1.2 Simultaneous Saccharification and Fermentation (SSF)
6.9.1.3 Simultaneous Saccharification and Co-Fermentation (SSCF)
6.9.2 Factors Affecting Bioethanol Fermentation Process
6.9.2.1 Substrate Concentration
6.9.2.2 pH Level
6.9.2.3 Temperature
6.9.2.4 Oxygen Availability
6.9.2.5 Nutrient Availability
6.9.2.6 Inhibitors and Toxins
6.9.2.7 Strain of Yeast
6.10 Agroindustrial Waste as a Source of Nutrients for Algae Biomass Growth
6.11 Conclusion and Future Perspectives
References
7. Wastewater Treatment Using Agroindustrial-Based Biomass: Pollutants’ Eradication and Energy GenerationCharu Sharma, Vijay Kumar, Shivesh Sharma and Vivek Kumar
7.1 Introduction
7.2 Agroindustrial Wastes
7.2.1 Management of Agroindustrial Wastes
7.3 Wastewater Treatment by Agroindustrial-Based Biomass
7.3.1 Constructed Wetlands
7.3.2 Biofiltration
7.3.3 Anaerobic Digestion
7.3.4 Phytoremediation
7.3.5 Role of Activated Carbon
7.3.6 Role of Biochar
7.4 Agricultural-Based Waste Materials as Bio Adsorbents
7.5 Hydrogen Production from Agroindustrial Biomass
7.6 Microbial-Mediated Bioenergy Production
7.6.1 Microbial Fuel Cells
7.6.2 Anaerobic Digestion
7.6.3 Ethanol Fermentation
7.6.4 Microbial Hydrogen Production
7.6.5 Microbial Oil Production (Microalgae and Yeast)
7.6.6 Microbial Electrosynthesis
7.6.7 Syngas Fermentation
7.6.8 Methane Production from Microbial Consortia
7.7 Microalgae Biomass as Possible Future Biodiesel
7.7.1 Benefits of Microalgal Biodiesel
7.7.1.1 Rapid Growth Rates
7.7.1.2 Cultivation Flexibility
7.7.1.3 Reduced Land and Water Footprint
7.7.1.4 CO2 Sequestration
7.7.1.5 Biodiesel Quality
7.7.1.6 Versatility of Lipid Profiles
7.7.2 Challenges and Considerations of Using Microalgae
7.7.2.1 Economic Viability
7.7.2.2 Cultivation Scale-Up
7.7.2.3 Strain Selection and Genetic Modification
7.7.2.4 Harvesting Efficiency
7.7.2.5 Competition with Existing Feedstocks
7.8 Conclusions and Future Perspective
References
8. Recovery of Heavy Metals from Wastewater Treatment and Anaerobic Digester Sludge Using a Chemical Precipitation ProcessLai Jun Tung, Nik Azimatolakma Awang, Hamidi Abdul Aziz and Nur Syamimi Zaidi
8.1 Introduction
8.2 Current State of Treatment Process
8.2.1 Sewage Treatment Plant (STP)
8.2.2 Anaerobic Digester (AD)
8.3 Application of Feedstock from Agroindustrial Wastes
8.4 Recent Advances on Material Recovery from Sewage Sludge
8.4.1 Electrochemical
8.4.2 Chemical Precipitation
8.4.3 Others
8.5 Parameters Affecting Chemical Precipitation
8.5.1 Role of pH in Chemical Precipitation
8.5.2 Role of Molarity of Acid Mixture in Chemical Precipitation
8.5.3 Glycine as Reducing Agent
8.5.4 Oxidising Agent
8.6 Challenges in Recovery of Heavy Metals from Sludge
8.6.1 Abundance of Heavy Metals Concentration
8.6.2 Organic Solids in the Sludges
8.7 Conclusion
References
9. Agro-Waste: A Potential Bio‑Surfactant SourceMousumi Gharai, N. Vasumathi, Ajita Kumari and T.V. Vijaya Kumar
9.1 Introduction
9.2 Effective Utilization of Agroindustrial Wastes
9.3 Bio-Based Surfactant
9.3.1 Agro-Waste-Based Biosurfactant
9.3.1.1 Oilseed and Vegetable Oil Residues
9.3.1.2 Forestry and Biomass Residues
9.3.1.3 Fruit and Vegetable Processing Waste
9.3.1.4 Whey and Dairy Industry By-Products
9.3.1.5 Oil Wastes
9.3.1.6 Dairy Whey
9.3.1.7 Starchy Waste
9.3.1.8 Molasses
9.3.1.9 Animal Fat
9.3.1.10 Soap Stock
9.3.1.11 Cassava Wastewater
9.3.1.12 Palm Oil Mill Effluent
9.3.1.13 Olive Oil Mill Effluent
9.3.1.14 Peanut Oil Cake
9.3.1.15 Soybean Waste
9.3.1.16 Orange Peel
9.4 Microorganisms and Enzymatic Processes
9.5 Types of Biosurfactant
9.5.1 Low-Molecular Weight Biosurfactant
9.5.1.1 Glycolipids
9.5.1.2 Lipopeptides and Lipoproteins
9.5.1.3 Fatty Acids, Phospholipids, and Neutral Lipids
9.5.1.4 Rhamnolipids
9.5.1.5 Sophorolipids
9.5.1.6 Trehalolipids
9.5.1.7 Surfactin
9.5.1.8 Lichenysin
9.5.2 Other Types of Biosurfactant
9.5.2.1 Polymeric Biosurfactant
9.5.2.2 Particulate Biosurfactant
9.6 Industrial Applications of Agro-Waste-Based Biosurfactants
9.6.1 Contaminated Soils
9.6.2 Oil Recovery
9.6.3 Cosmetic and Pharmaceutical Industries
9.6.4 Commercial Laundry Detergents
9.6.5 Agriculture
9.6.6 Reduction in CO2 Emissions
9.6.7 Mineral Processing Industry
9.7 Advantages of Agro-Waste-Based Biosurfactants
9.7.1 Environmental Factors
9.7.2 Surface and Interface Activity
9.7.3 Biodegradability
9.7.4 Emulsion Framing and Emulsion Breaking
9.7.5 Antiadhesive Agents
9.7.6 Antimicrobial Action
9.7.7 Anticancer Activity
9.8 Conclusion
References
10. Agroindustrial Waste and BiosurfactantNursyafi Amila Hilmy, Auni Asyifa Muslim, Aina Nabila Mohamad Nazri, Rosnani Alkarimiah and Hamidi Abd Aziz
10.1 Introduction
10.2 Fatty Acids and Neutral Lipids
10.3 Sources of Agroindustrial Wastes
10.4 Agroindustrial Wastes Management
10.4.1 Overview
10.4.2 Types of Agroindustrial Waste
10.4.3 Methods of Waste Management
10.4.3.1 Pre-Treatment
10.4.3.2 Fermentation
10.4.4 The Potential of Agroindustrial Waste Utilization
10.5 Biosurfactant: An Overview
10.6 Properties of Biosurfactant
10.7 Types of Biosurfactant
10.8 Application of Biosurfactant
10.9 The Use of Agroindustrial Waste in Biosurfactant Production
10.10 Conclusion
References
11. Green Synthesis of Nanoparticles Using Different Agroindustrial WastesParvindar M. Sah, Harshala S. Naik and Rajesh W. Raut
11.1 Introduction
11.2 Nanomaterials and Nano Management of Agroindustrial Wastes
11.3 Different Sources of Agroindustrial Wastes
11.3.1 Sustainable Utilization of Agroindustrial Residues in Rural Livelihood
11.3.2 Agroindustrial Wastes Crop Preparation By-Product
11.3.3 Sources of Agroindustrial Wastes: Unprocessed Fruits and Vegetables
11.3.4 Crop Residues from Agroindustrial Wastes
11.4 Biochemical Profile of Agroindustrial By-Products
11.5 Bio-Synthesis of Nanomaterials from Agroindustrial Wastes
11.6 Inorganic-Based Nanomaterials from Agroindustrial Waste
11.6.1 Gold Nanoparticles
11.6.2 Palladium Nanoparticles
11.6.3 Silicon Nanoparticles
11.6.4 Platinum Nanoparticles
11.6.5 Silver Nanoparticles
11.7 Synthesis of Carbon-Based Nanomaterials from Agroindustrial Wastes
11.7.1 Carbon Nanoparticles
11.8 Synthesis of Composite-Based Nanomaterials from Agroindustrial Wastes
11.8.1 Zinc Oxide Nanoparticles
11.8.2 Nickel Oxide Nanoparticles
11.8.3 Iron Oxide Magnetic Nanoparticles
11.8.4 Titanium Dioxide Nanoparticles
11.8.5 Silica Nanoparticles
11.9 Application of Nanomaterials from Agroindustrial Wastes
11.9.1 Nano-Biosensor
11.9.2 Nano-Fertilizers
11.9.3 Nano-Fungicides
11.9.4 Adsorbents
11.9.5 Catalysts
11.9.6 Battery
11.10 Health Risk and Toxicology
11.11 Future Perspectives
11.12 Conclusion
Acknowledgment
References
12. Eco-Friendly Walnut Shell Agro-Waste-Derived CQDs for Insecticide Sensing, Anti-Inflammatory, and Cytotoxic StudiesM. Saranya Devi, T. Daniel Thangadurai and N. Manjubaashini
12.1 Introduction
12.2 Experimental
12.2.1 Synthesis of WS-CQDs
12.2.2 In Vitro Cytotoxicity MTT Assay
12.2.3 In Vitro Anti-Inflammatory Assay
12.3 Result and Discussion
12.3.1 Diffraction Studies
12.3.2 Raman and FTIR Analysis
12.3.3 Investigation of Electronic State and Elemental Composition
12.3.4 Examination of Morphology Nature
12.3.5 Optical Characteristics of WS-CQDs
12.4 Agriculture Application of WS-CQDs
12.4.1 Sensitivity of WS-CQDs Towards Insecticide
12.4.2 Time-Correlated Single Photon Counting Studies
12.4.3 Effect of pH and Time, and Interference Studies
12.5 Biological Applications of WS-CQDs
12.5.1 Cytotoxicity Analysis
12.5.2 Anti-Inflammatory Property
12.6 Conclusion, Critical Issues, and Future Perspectives
References
13. Advanced Oxidation Processes of Landfill LeachateSiti Nor Farhana Zakaria, Elfreda Peter and Hamidi Abdul Aziz
13.1 Introduction
13.2 Landfill Leachate
13.3 Advanced Oxidation Process
13.3.1 Advanced Oxidation Process in Landfill Leachate Treatment
13.3.2 Ozonation Process in Landfill Leachate Treatment
13.3.3 Catalyst Ozonation Process in Landfill Leachate Treatment
13.4 Conclusion
References
14. Genetically Modified Microorganisms Being Released into Ecosystems: BiomonitoringDesouky Abd-El-Haleem
14.1 Introduction
14.2 Methods for Genetic Engineering
14.2.1 Natural
14.2.2 Mutagenesis
14.2.3 GMM Transformation and Genome Integration
14.2.4 Recombinant Engineering
14.2.5 Genome Rearrangement, Recombineering, and Gene Integration Supported by CRISPR-Cas9
14.3 GMMs May Pose a Risk
14.4 Counting of the Cultivable GMMs
14.4.1 Counting of Non-Cultivable GMMs
14.5 Visualization, Activity Assessment and DNA Detection of GMMs
14.6 Real-Time Polymerase Chain Reaction (qPCR)
14.7 Whole Genome Sequencing (WGS)
14.8 DNA Walking
14.9 Shotgun Metagenomics Approach
14.10 Conclusion
References
About the Editors
IndexBack to Top