The book is essential for anyone eager to understand the transformative potential of 2D nanomaterials in biotechnology and medical science, offering in-depth insights into their unique properties, synthesis methods, and practical applications in an ever-evolving field.
Table of ContentsPreface
1. Overview of 2D Nanomaterials for Biosensing and Imaging ApplicationsRam Sevak Singh, Kalim Deshmukh, Ram Dayal Patidar, Rituraj Dubey and Chaudhery Mustansar Hussain
1.1 Introduction
1.2 2D Transition Metal Dichalcogenides
1.3 MXenes
1.4 2D Hexagonal Boron Nitride
1.5 Black Phosphorus
1.6 2D Transition Metals Oxides
1.7 2D Metal Organic Frameworks
1.8 2D Covalent Organic Frameworks
1.9 Graphitic Carbon Nitrides
1.10 Layered Silicates
1.11 Graphdiyne
1.12 Silicene and Germanene
1.13 2D Pnictogens
References
2. Electrical, Optical, and Electronic Properties of 2D NanomaterialsHumira Assad, Ishrat Fatma, Richika Ganjoo and Ashish Kumar
List of Abbreviations
2.1 Introduction
2.2 Framework and Composition of 2D Nanomaterials
2.3 Classification and Examples of 2D Nanomaterials
2.4 Properties of 2D Nanomaterials
2.4.1 Electrical Properties
2.4.2 Optical Properties
2.4.3 Electronic Properties
2.4.4 Other Properties
2.5 Conclusion
References
3. Design and Synthesis Methods of 2D NanomaterialsMuhammad Hossein Ashoub and Mahnaz Amiri
Abbreviations
3.1 Introduction
3.2 2D Material Synthesis
3.2.1 Top-Down Strategy
3.2.1.1 Electrochemical Exfoliation
3.2.1.2 Exfoliation via Micromechanical Means
3.2.1.3 Exfoliation with Ultrasonic Waves
3.2.1.4 Exfoliation and Lithium Intercalation
3.2.1.5 Exfoliation Due to Ion Change
3.2.2 Bottom-Up Strategy
3.2.2.1 Wet Chemical Techniques
3.2.2.2 Hydro/Solvothermal Synthesis
3.2.2.3 Template Synthesis
3.2.2.4 Microwave-Assisted Technique
3.2.2.5 Topochemical Transformation
3.2.2.6 Chemical Vapor Deposition (CVD)
3.2.2.7 Physical Vapor Deposition (PVD)
3.2.3 Technologies and Techniques for Fabricating Materials
3.2.3.1 Large-Area Exfoliation of TMD Monolayers
3.2.3.2 Synthesis of Large-Area TMD Films Using Metalorganic via Chemical Vapor Deposition (MOCVD)
3.2.3.3 2D Metal Chalcogenides Produced by Colloidal Synthesis
3.3 Characterization of 2D Materials
3.3.1 Microscopic Characterization
3.3.2 Characterization using Spectroscopy
3.4 Applications of 2D Materials
3.4.1 Gas-Sensing Equipment
3.4.2 The Reaction of Hydrogen Evolution
3.5 Conclusion and Perspectives
References
4. Characterization of 2D Nanomaterials using Spectroscopic and Microscopic ApproachesAshwini Kumar Mishra, Mukesh Pandey, Ganesh Dane, Ankit Jain, Nishi Mody, Pravat Kumar Sahoo and Neha S.L.
4.1 Introduction
4.2 Functionalization of 2D-NM
4.3 Tribological Properties of 2D-NM
4.3.1 Testing of Tribological Properties
4.3.2 2-D Layered-Structured Materials
4.3.3 Two-Dimensional Material Tribological Properties as a Function of Structure-Activity Relationship
4.4 Spectroscopic Characterization of 2D-NM
4.4.1 Particle Size Analysis
4.4.2 X-Ray Diffraction as a Structural Analytical Tool
4.4.3 Fourier Transform Infrared Spectroscopy
4.4.4 X-Ray Photoelectron Spectroscopy
4.4.5 Raman Spectroscopy
4.4.6 Nonlinear Optics (NLO) Spectroscopy
4.5 Microscopic Characterization of 2D-NM
4.5.1 TEM-Transmission Electron Microscopy
4.5.2 SEM-Scanning Electron Microscopy
4.5.3 Helium Ion Microscopy (HIM)
4.6 Advanced Techniques in 2D-NM Characterization
4.6.1 Thermal Characterization of 2D-NM
4.6.1.1 Raman Optothermal Method
4.6.1.2 Micro-Bridge Method
4.6.2 Electron Tomography
4.6.2.1 Structural Analysis
4.6.2.2 Chemical Analysis
4.6.2.3 Quantitative Analysis
4.7 Conclusions and Future Perspectives
References
5. Graphene and Its Derivatives for Biosensing and ImagingBinapani Barik, Srikanta Moharana, Shubhashree Das and Swadesh Kumar Pattanik
5.1 Introduction
5.2 Properties of Graphene and Its Derivatives
5.3 Electrical Conductivity
5.4 Large Surface Area
5.5 Thermal Properties
5.6 Mechanical Strength
5.7 Graphene-Based Biosensors
5.7.1 Electrochemical Biosensors
5.7.2 Optical Biosensors
5.8 Functionalization and Bioconjugation
5.8.1 Functionalization of Covalent Bonds
5.8.2 Non-Covalent Functionalization
5.9 Imaging Applications of Graphene and Graphene Derivatives
5.9.1 Fluorescence Imaging
5.9.2 Magnetic Resonance Imaging (MRI)
5.9.3 Biocompatibility
5.10 Challenges and Future Directions
5.11 Conclusion
Acknowledgments
References
6. Hexagonal Boron Nitride for Biosensing and Bioimaging ApplicationsChandan Hunsur Ravikumar, K. Pramoda, Kothanahally S. Sharath Kumar, M.B. Sridhara and R. Geetha Balakrishna
6.1 Introduction
6.2 Synthesis of Hexagonal BN and BN QDs
6.3 Application of Boron Nitride toward Biosensing and Bioimaging
6.3.1 BN and BN QDs for Biosensing
6.4 Bioimaging
6.5 Conclusion
References
7. Black Phosphorus for Biosensing and Imaging ApplicationsPavan S. R. and Ashwini Prabhu
7.1 Introduction
7.2 General Properties of Black Phosphorous
7.3 Biosensing
7.3.1 Gas and Humidity Sensing
7.3.2 Calorimetric Sensing
7.3.3 Electrochemical Sensing
7.3.4 Fluorescence Sensing
7.3.5 Electrochemiluminescence (ECL) Biosensors
7.4 Imaging
7.5 Conclusion and Future Perspectives
References
8. 2D Transition Metal Oxides for Biosensing and Imaging ApplicationNisha Yadav, Divya Choudhary, Varun Rai, Eslam M. Hamed, Kamalakanta Behera and Gyandshwar Kumar Rao
8.1 Introduction
8.2 Types of TMOs
8.3 Synthetic Approach of TMOs
8.3.1 Top-Down Synthesis Method
8.3.1.1 Liquid-Phase Exfoliation
8.3.1.2 Intercalation Exfoliation
8.3.1.3 Mechanical Exfoliation
8.3.2 Bottom-Up Synthesis Method
8.3.2.1 Electrodeposition
8.3.2.2 Self-Assembly
8.3.2.3 Chemical Vapor Deposition
8.3.2.4 Hydrothermal
8.4 Biosensing
8.4.1 2D TMOs Based Electrode Based Biosensors
8.4.1.1 Electrochemical Biosensors
8.4.1.2 Electrochemiluminescence (ECL) Biosensors
8.4.2 2D TMOs Based Optical Based Biosensors
8.4.2.1 Colorimetric Biosensors
8.4.2.2 Fluorescent Biosensors
8.5 Bioimaging
8.5.1 Magnetic Resonance Imaging (MRI)
8.5.2 Therapeutics and Diagnostics
8.6 Conclusions and Prospects
Acknowledgments
References
9. 2D Transition Metal Dichalcogenides for Biosensing and Imaging ApplicationsRituraj Dubey, Eslam M. Hamed, Kamalakanta Behera, Ram Dayal Patidar, Ram Sevak Singh and Varun Rai
9.1 Introduction
9.2 Fabrication of 2D TMD-NMs
9.2.1 Background
9.2.2 Top-Down Approach
9.2.2.1 Mechanical Exfoliation Approach
9.2.2.2 Liquid-Phase Exfoliation Approach
9.2.2.3 Intercalation Exfoliation Approach
9.2.2.4 Hybrid Exfoliation Approach
9.2.3 Bottom-Up Approaches
9.2.3.1 Chemical Vapor Deposition (CVD) Approach
9.2.3.2 Wet-Chemical Analysis Approach (Hydrothermal/Solvothermal Approach)
9.2.3.3 Electrodeposition Approach
9.3 Types of Biosensors
9.3.1 Optical
9.3.2 Electrochemical
9.3.3 Electronic
9.4 Applications
9.4.1 Detection of Nucleic Acids (DNA and RNA)
9.4.2 Detection of Bacteria and Virus
9.4.3 Detection of Proteins
9.4.4 Detection of Small Molecules
9.4.5 Biomarker Detection
9.5 Bioimaging Applications
9.5.1 Computed Tomography Imaging
9.5.2 Magnetic Resonance Imaging
9.5.3 Photo-Acoustic Imaging
9.6 Conclusions and Future Outlook
Acknowledgements
References
10. Two-Dimensional Nanosized Metal-Organic Frameworks for Biosensing and Bioimaging ApplicationsVaishnavi Sali, Balaga Venkata Krishna Rao, Srusti Tambe, Ajeet Kumar, Biranchi Narayan Das and Sabya Sachi Das
10.1 Introduction
10.2 Synthesis and Characterization Techniques
10.3 Metal Organic Frameworks: Classification and Characterization
10.3.1 Unimodular Imaging (Optical Imaging)
10.3.1.1 Fluorescent Reagent Doping-Based “Turn On” Mechanisms
10.3.1.2 Non-Fluorescent Reagent Doped Optical Imaging
10.3.1.3 Undoped Optical Imaging
10.3.1.4 Magnetic Resonance Imaging (MRI)
10.3.1.5 Paramagnetic Substances (Gd-Based/Mn-Based)
10.3.1.6 Computed Tomography (CT)
10.3.2 Multimodal Imaging
10.4 2D-MOFs: Synthesis and Characterization Techniques
10.4.1 Characterization
10.5 2D-MOFs in Imaging/Bioimaging Applications
10.6 2D MOFs in Biosensing Applications
10.6.1 Glucose Biosensing
10.6.2 Gaseous Biosensing
10.7 2D-MOFs in Clinical Applications
10.7.1 MOF-Based Drug Delivery System for Cancer Treatment
10.7.2 MOF-Based Bioimaging Nanoplatforms
10.7.3 MOF-Based Antibacterial Nanomaterials
10.8 Conclusion and Future Perspectives
References
11. Exploring Covalent Organic Frameworks (COFs) as Advanced Tools for Biosensing and ImagingKunjal Soni and Rakesh Kumar Ameta
11.1 Introduction
11.2 Basic Topology of the COFs to be a Sensor
11.3 Recent Advances in COFs in Biosensing and Imaging
11.3.1 COFs as Hydrogen Ion Sensing
11.3.2 COFs Acting as Electrochemical Biosensors
11.4 Conclusion
Acknowledgements
References
12. Biosensing and Imaging Using Graphitic Carbon Nitride MaterialsAbhay Vijay Kotkondawar and Jyotisman Rath
12.1 Introduction
12.2 Biosensing Application of Graphitic Carbon Nitride
12.3 Bioimaging Applications of Graphitic Carbon Nitride
12.4 Conclusion
References
13. 2D MXenes for Biosensing and Imaging ApplicationsSudeepta Baruah, Pallabi Hazarika and Swapnali Hazarika
13.1 Introduction
13.2 Synthesis of Mxenes
13.2.1 Top-Down Approach
13.2.1.1 Precursors
13.2.1.2 Etching
13.2.2 Bottom-Up Approach
13.3 Properties of MXenes
13.3.1 Mechanical Properties
13.3.2 Electronic Properties
13.3.3 Optical Properties
13.3.4 Magnetic Properties
13.4 Applications
13.5 Future Aspects and Concluding Remarks
Acknowledgement
References
14. Layered Silicates for Biosensing and Imaging Applications Atul Garkal, Shailvi Shah, Lajja Patel, Anam Sami, Mohit Shah, Dhaivat Parikh and Tejal Mehta
14.1 Introduction
14.2 Types of Layered Silicates
14.2.1 Microporous Organically Pillared Layered Silicates (MOPS)
14.2.2 Nano Clays
14.2.3 Laponite
14.2.4 Montmorillonite
14.3 Layered Silicates Nanocomposites
14.3.1 Polymer Layered Silicate Nanocomposites
14.4 Structure and Characteristics of Polymer Layered Silicates
14.5 Preparation Techniques Utilized for the Synthesis of Nanocomposites
14.5.1 Template Synthesis
14.5.2 Intercalation of Polymer from Solution
14.5.3 In Situ Intercalative Polymerization
14.5.4 Melt Intercalation
14.6 Characterization of Layered Silicates
14.6.1 Scanning Electron Microscopy (SEM)
14.6.2 X-Ray Diffraction (XRD)
14.6.3 Nuclear Magnetic Resonance (NMR)
14.6.4 Differential Scanning Calorimetry (DSC)
14.6.5 Thermogravimetric Analysis (TGA)
14.7 Layered Silicates for Biosensing and Imaging
14.8 Structural Characteristics of Layered Silicates
14.9 Surface Modification
14.10 Accommodation of Drug Molecules
14.11 Layered Silicates as Drug Carrier
14.12 Biomedical Applications of Layered Silicates
14.12.1 Wound Dressings
14.12.2 Bone Regeneration
14.12.3 Dental Materials
14.12.4 Imaging Agents
14.12.5 Tissue Engineering Scaffolds
14.12.6 Cancer
14.12.7 Bioactive Coatings
14.12.8 Diagnostic Nanoparticles
14.12.9 Biosensors
14.12.10 Dermal and Transdermal Drug Delivery
14.13 Conclusion
Acknowledgement
References
15. Graphdiyne for Biosensing and Imaging ApplicationsDrishti Gupta, Rituraj Dubey, Eslam M. Hamed, Varun Rai, Kamal Nayan Sharma, Ram Dayal Patidar and Kamalakanta Behera
15.1 Introduction
15.2 Fabrication of Graphdiyne
15.2.1 Synthesis of GDY
15.2.1.1 Dry Synthesis
15.2.1.2 Wet Synthesis
15.2.2 Synthesis of Derivatives of GDYs (Functionalized GDYs)
15.3 Biosensing Applications
15.3.1 Detection of Small Chemical Species Molecules
15.3.2 Detection of Metal Ions
15.3.3 Detection of RNA/DNA-
15.3.4 Proteins Detection
15.4 Bioimaging Applications
15.4.1 For Tumor Therapy
15.4.2 For Antibacterial Therapy
15.4.3 For Other Disease Therapy via Cell Imaging
15.5 Future Outlook and Conclusions
Acknowledgments
References
16. Silicene and Germanene for Biosensing and Imaging ApplicationJothi Dheivasikamani Abidharini, Biju Reji Souparnika, James Elizabeth, Venkataramanaravi Bavyataa, Ramesh Nivedha, Anandakumar Umamaheswari, Kumar Vignesh, Balasubramanian Balamuralikrishnan, Meyyazhagan Arun and Arumugam Vijaya Anand
16.1 Introduction
16.2 Group IV Elements
16.2.1 Silicene
16.2.1.1 Synthesis of Silicene
16.2.2 Germanene
16.2.2.1 Synthesis of Germanene
16.3 Physical Properties
16.3.1 Physical Properties of Silicene
16.3.1.1 Physical Properties of Germanene
16.4 Chemical Properties
16.4.1 Chemical Properties of Silicene
16.4.1.1 Chemical Properties of Germanene
16.5 Biosensor
16.5.1 Types of Biosensors
16.5.1.1 Electrochemical Sensing
16.5.1.2 Enzyme-Based Biosensor
16.5.1.3 Immunological Biosensor
16.5.1.4 DNA Biosensor
16.5.2 Silicene and Germanene for Biosensing Application
16.6 Bioimaging
16.6.1 Types of Bioimaging
16.6.1.1 Super Resolution
16.6.1.2 Fluorescence Recovery after Photobleaching
16.6.1.3 Fluorescence Resonance Energy Transfer
16.6.1.4 Two-Photon Fluorescence Excitation Microscopy
16.6.2 Silicene and Germanene for Bioimaging Application
16.7 Limitations
16.8 Conclusion
References
17. 2D Pnictogens for Biosensing and Imaging ApplicationsArumugam Jananisri, Irudhayaraj Peatrise Geofferina, Ganesh Vishalini, Subramaniam Sridhar, Pachaiyappan Vimalraj, Gunna Suresh Babu Suruthi,
Senthil Sujitha, Balasubramanian Balamuralikrishnan, Meyyazhagan Arun and Arumugam Vijaya Anand
17.1 Introduction
17.2 2D Materials
17.3 Pnictogens
17.4 Characteristics of Pnictogen
17.4.1 Physical Characteristics
17.4.2 Chemical Properties
17.5 Properties of Pnictogens
17.5.1 Band Structure
17.5.2 Heterostructure
17.5.3 Optical Properties
17.5.4 Anisotropic Properties
17.5.5 Photothermal Behavior
17.5.6 Raman Spectroscopy
17.6 Production Methods
17.6.1 Top-Down Method
17.6.1.1 Mechanical Exfoliation
17.6.1.2 Liquid Phase Exfoliation
17.6.1.3 Sonication-Assisted Exfoliation
17.6.1.4 Shear Force Exfoliation
17.6.1.5 Electrochemical Exfoliation
17.6.2 Bottom-Up Method
17.6.2.1 Molecular Beam Epitaxy
17.6.2.2 Van Der Waals Epitaxy
17.6.2.3 Chemical Vapor Deposition
17.6.2.4 Solvothermal Method
17.7 2D Pnictogen as Biosensors
17.7.1 Electrochemical Biosensors
17.7.2 Enzyme-Phenol-Based Biosensors
17.7.3 Nucleic Acid-Based Biosensors
17.7.4 Immuno-Biosensors
17.7.5 Optical Biosensors
17.8 Applications of 2D Pnictogens in the Biomedical Field
17.8.1 Chemotherapy
17.8.2 Photothermal Therapy
17.8.3 Photodynamic Therapy
17.8.4 Sonodynamic Therapy
17.8.5 Immunotherapy
17.8.6 Drug Carriers
17.9 Pnictogens in Imaging Techniques
17.9.1 Pnictogen Combined Computed Tomography
17.9.2 Pnictogen Combined Photo-Acoustic Imaging
17.10 Toxicity
17.11 Conclusion
References
18. Biosensing and Imaging Based on Functionalized 2D NanomaterialsRamya P. R., Sayanti Halder and Sonu Gandhi
18.1 Introduction
18.2 2D Nanomaterials
18.2.1 Graphene
18.2.2 Hexagonal Boron Nitride (h-BN)
18.2.3 Transition Metal Dichalcogenides (TMDs)
18.2.4 Black Phosphorus
18.2.5 Other 2D Materials
18.3 Synthesis and Functionalization of 2D Nanomaterials
18.3.1 Non-Covalent Functionalization
18.3.2 Covalent Functionalization
18.4 Functionalized 2D Nanomaterials for Biosensing
18.4.1 Electrochemical Biosensors
18.4.1.1 Potentiometric Electrochemical Biosensor
18.4.1.2 Amperometric Electrochemical Biosensor
18.4.1.3 Conductometric Electrochemical Biosensor
18.4.2 Optical Biosensors
18.4.3 Colorimetric Biosensors
18.4.3.1 Detection of DNA and miRNA
18.4.3.2 Detection of Proteins and Ligands
18.4.3.3 Detection of Microorganism
18.5 Functionalized 2D Nanomaterials for Bioimaging
18.5.1 Fluorescent Imaging
18.5.2 Photoacoustic Imaging
18.5.3 Magnetic Resonance Imaging
18.5.4 Computed Tomography Imaging
18.5.5 Positron Emission-Computed Tomography Imaging
18.5.6 Ultrasound (US) Imaging
18.6 Conclusion and Future Prospects
Acknowledgements
References
19. Polymer Nanocomposites of 2D Nanomaterials for Biosensing and Imaging ApplicationsAnita Prasad Poornima, Talukdar Das Ankur, Palanisamy Priyanga, Ray Amardeep Preethi, Sidhic Nihala, Marudhachalam Kamalesh, Selvarasu Elamathi, Naif Abdullah Al-Dhabi, Valan Arasu Mariadhas and Arumugam Vijaya Anand
19.1 Introduction
19.2 Graphene-Based Nanocomposites
19.3 Graphene-Based Electrochemical Biosensors
19.3.1 Glucose Biosensors
19.3.2 Cholesterol Biosensors
19.3.3 Hydrogen Peroxide (H2O2) Biosensors
19.3.4 Nucleic Acid Biosensors
19.3.5 Detection of Dopamine, Ascorbic Acid, and Uric Acid
19.3.6 Detection of Enzymes
19.3.7 Detection of Cancer Biomarkers
19.3.8 Detection of Pathogens
19.3.9 Detection of Food Toxins
19.3.10 Detection of Toxic Heavy Metal Ions
19.3.11 Detection of Pesticide
19.4 Graphene-Based Fluorescent Biosensors
19.5 Selectivity of Graphene-Based Biosensors
19.6 2D Nanomaterials Polymer Composites of Biomedical Applications
19.7 Carbon Allotrope-Based Nanomaterial Applications in Healthcare Biosensing
19.8 Applications of Inorganic Nanomaterials in Healthcare Biosensing
19.9 Organic Nanomaterial Applications for Healthcare Biosensing
19.10 Conclusion
References
20. Heterostructures Based on 2D Nanomaterials for Biosensing and Imaging ApplicationsDiksha Singh, Sarita Shaktawat, Ranjana Verma, Kshitij R.B. Singh and Jay Singh
20.1 Introduction
20.2 Various Magnificent Assets of Heterostructure-Based 2D Nanomaterials
20.2.1 Heterostructure-Based 2D Nanomaterial Functioning as Lubricants
20.2.2 2D and Heterostructure Nanomaterials to Tackle Drug-Resistant Bacteria
20.2.3 Heterostructures Based on 2D-MoS2 and MoS2 Nanomaterial Contesting Drug-Resistant Bacteria
20.3 2D Heterostructures Nanomaterial for Biosensing Application
20.4 Mxene-Based Heterostructures Nanomaterial for Biosensing
20.5 Significance of Chemical and Biological Sensing Using Surface-Enhanced
Raman Scattering (SERS) that are Based on Heterostructures Nanomaterial
20.6 Sensitivity-Enhancement Employing a Blue Phosphorus/MoS2 Heterostructure and Zinc Oxide as the Surface Plasmon Resonance Biosensor
20.7 Heterostructures Based on 2D Nanomaterials for Imaging
20.7.1 Performance, Methods and Advancement of IR Detection and Imaging
20.7.2 Single Pixel Imaging
20.7.3 Array Imaging
20.7.4 Photodetectors Based on 2D Heterostructures
20.8 Biomedical Application
20.9 Conclusion and Prospects
References
21. Modeling and Simulations of 2D Nanomaterials for Biosensing and Imaging ApplicationsMonika Srivastava and Anurag Srivastava
21.1 Modeling and Simulations
21.1.1 Importance of Modeling in Computational Materials Sciences
21.1.2 Types of Simulations Methods
21.1.2.1 Finite Element Analysis
21.1.2.2 Monte Carlo Method (MC)
21.1.2.3 Molecular Dynamics
21.1.2.4 First-Principles Methods (Abinito Methods)
21.2 Classification of Two-Dimensional Materials
21.2.1 Graphene
21.2.2 Beyond Graphene
21.2.2.1 Monoelemental 2D Layers (Xenes)
21.2.2.2 Transition Metals Dichalcogenides (TMDs)
21.2.2.3 Other Emerging 2D Nanomaterial
21.3 Surface Engineering of 2D Materials
21.3.1 Functionalization
21.3.2 Defects
21.3.3 Heterostructures
21.4 Modeling and Synthesis of 2D Nanomaterials
21.4.1 Computational Modeling of 2D Nanomaterials
21.4.2 Synthesis Methods
21.5 Applications of 2D Materials
21.6 2D Nanomaterials as Biosensors
21.7 Challenges
21.8 Potential Future Outlook
21.9 Conclusion
References
22. Biocompatibility, Toxicity Concerns, Environmental and Safety Considerations, Legal and Commercialization Aspects of 2D NanomaterialsShikha Gulati, Lakshita Chhabra and Anoushka Amar
22.1 Introduction
22.2 Biocompatibility of 2D Nanomaterials
22.3 Biodegradability of 2D Nanomaterials
22.4 Layered 2D Nanomaterials
22.4.1 Factors Influencing Nanotoxicity of 2D Layered Nanomaterials
22.4.1.1 Size, Concentration, and Exposure Time
22.4.1.2 Number of Layers
22.4.1.3 Surface Functionalization and Chemical Composition
22.5 Toxicity Evaluation of 2D Nanomaterials
22.5.1 In Vitro Toxicity Assessment of 2D Nanomaterials
22.5.1.1 In Vitro Toxicity of Graphene-Based Materials
22.5.1.2 In Vitro Toxicity of Transition Metal Dichalcogenides (TMDs)
22.5.1.3 In Vitro Toxicity of Black Phosphorus
22.5.2 In Vivo Toxicity Assessment of 2D Nanomaterials
22.5.2.1 In Vivo Toxicity Assessment of Graphene-Based Materials
22.5.2.2 In Vivo Toxicity of Transition Metal Dichalcogenides (TMDs)
22.5.2.3 In Vivo Toxicity of Black Phosphorus
22.6 Interaction of 2D Nanomaterials with the Environment
22.6.1 Antimicrobial Effect of Graphene-Based Particles
22.6.2 Effect of 2D Materials on Algae and Plant Growth
22.7 Legal and Bio-Medical Commercialization Aspects of 2D Nanomaterials
22.7.1 Bio-Medical Commercialization Aspects
22.7.1.1 Pharmaceuticals
22.7.1.2 Imaging
22.7.1.3 Diagnostics
22.7.1.4 Tissue Engineering
22.7.1.5 Medical Electronics
22.7.1.6 Implants and Prosthetics
22.7.2 Legal and Ethical Aspects
22.8 Conclusion and Future Perspectives
References
IndexBack to Top